A média móvel como um filtro A média móvel é frequentemente utilizada para suavização de dados na presença de ruído. A média móvel simples nem sempre é reconhecida como o filtro de Resposta de Impulso Finito (FIR) que é, enquanto é realmente um dos filtros mais comuns no processamento de sinal. Tratá-lo como um filtro permite compará-lo com, por exemplo, windowed-sinc filtros (ver os artigos sobre low-pass, high-pass, band-pass e band-reject filtros para exemplos desses). A principal diferença com esses filtros é que a média móvel é adequada para sinais para os quais a informação útil está contida no domínio do tempo. Das quais as medidas de alisamento por média são um excelente exemplo. Filtros windowed-sinc, por outro lado, são fortes performers no domínio da freqüência. Com equalização no processamento de áudio como um exemplo típico. Há uma comparação mais detalhada de ambos os tipos de filtros no domínio do tempo versus desempenho de domínio de freqüência de filtros. Se você tiver dados para os quais o tempo e o domínio de freqüência são importantes, então você pode querer dar uma olhada em Variações na Média Móvel. Que apresenta um número de versões ponderadas da média móvel que são melhores nisso. A média móvel de comprimento (N) pode ser definida como escrita como é tipicamente implementada, com a amostra de saída corrente como a média das amostras (N) anteriores. Visto como um filtro, a média móvel executa uma convolução da seqüência de entrada (xn) com um pulso retangular de comprimento (N) e altura (1N) (para fazer a área do pulso e, portanto, o ganho do filtro , 1 ). Na prática, é melhor tomar (N) ímpar. Embora uma média móvel possa também ser calculada usando um número par de amostras, usar um valor ímpar para (N) tem a vantagem de que o atraso do filtro será um número inteiro de amostras, uma vez que o atraso de um filtro com (N) Amostras é exactamente ((N-1) 2). A média móvel pode então ser alinhada exatamente com os dados originais deslocando-o por um número inteiro de amostras. Domínio Dado que a média móvel é uma convolução com um pulso retangular, a sua resposta de frequência é uma função sinc. Isso torna algo como o dual do filtro windowed-sinc, uma vez que é uma convolução com um pulso sinc que resulta em uma resposta de freqüência retangular. É esta resposta de freqüência de sinc que faz com que a média móvel seja um desempenho fraco no domínio da freqüência. No entanto, ele funciona muito bem no domínio do tempo. Portanto, é perfeito para suavizar os dados para remover o ruído, enquanto ao mesmo tempo ainda mantém uma rápida resposta passo (Figura 1). Para o típico Ruído Gaussiano Branco Aditivo (AWGN) que é freqüentemente assumido, a média (N) de amostras tem o efeito de aumentar a SNR por um fator de (sqrt N). Como o ruído para as amostras individuais não está correlacionado, não há razão para tratar cada amostra de forma diferente. Assim, a média móvel, que dá a cada amostra o mesmo peso, vai se livrar da quantidade máxima de ruído para uma dada nitidez resposta passo. Implementação Porque é um filtro FIR, a média móvel pode ser implementada através de convolução. Ele terá então a mesma eficiência (ou falta dela) como qualquer outro filtro FIR. No entanto, também pode ser implementado recursivamente, de uma forma muito eficiente. Segue-se diretamente a partir da definição de que esta fórmula é o resultado das expressões para (yn) e (yn1), ou seja, onde observamos que a mudança entre (yn1) e (yn) é que um termo extra (xn1N) aparece em O final, enquanto o termo (xn-N1N) é removido desde o início. Nas aplicações práticas, muitas vezes é possível deixar de fora a divisão por (N) para cada termo, compensando o ganho resultante de (N) em outro lugar. Esta implementação recursiva será muito mais rápida que a convolução. Cada novo valor de (y) pode ser calculado com apenas duas adições, em vez das (N) adições que seriam necessárias para uma implementação direta da definição. Uma coisa a olhar para fora com uma implementação recursiva é que os erros de arredondamento irá acumular. Isso pode ou não pode ser um problema para o aplicativo, mas também implica que essa implementação recursiva realmente funcionará melhor com uma implementação inteira do que com números de ponto flutuante. Isso é bastante incomum, uma vez que uma implementação de ponto flutuante é geralmente mais simples. A conclusão de tudo isso deve ser que você nunca deve subestimar a utilidade do simples filtro de média móvel em aplicações de processamento de sinal. Filter Design Tool Este artigo é complementado com uma ferramenta Filter Design. Experimente com diferentes valores para (N) e visualize os filtros resultantes. Experimente agoraMoving Average Filter (MA filter) Loading. O filtro de média móvel é um filtro simples Low Pass FIR (Finite Impulse Response) comumente usado para alisar uma matriz de datasign amostrada. Ele toma M amostras de entrada de cada vez e pegue a média dessas M-amostras e produz um único ponto de saída. É uma estrutura de LPF (Low Pass Filter) muito simples que vem à mão para cientistas e engenheiros para filtrar componentes indesejados ruidosos dos dados pretendidos. À medida que o comprimento do filtro aumenta (o parâmetro M) a suavidade da saída aumenta, enquanto que as transições nítidas nos dados são tornadas cada vez mais sem corte. Isto implica que este filtro tem uma excelente resposta no domínio do tempo mas uma resposta de frequência pobre. O filtro MA executa três funções importantes: 1) Toma M pontos de entrada, calcula a média desses pontos M e produz um único ponto de saída 2) Devido aos cálculos computacionais envolvidos. O filtro introduz uma quantidade definida de atraso 3) O filtro age como um Filtro de Passagem Baixa (com resposta de domínio de freqüência fraca e uma boa resposta de domínio de tempo). Código Matlab: O código matlab seguinte simula a resposta no domínio do tempo de um filtro M-point Moving Average e também traça a resposta de freqüência para vários comprimentos de filtro. Time Domain Response: No primeiro gráfico, temos a entrada que está entrando no filtro de média móvel. A entrada é ruidosa e nosso objetivo é reduzir o ruído. A figura seguinte é a resposta de saída de um filtro de média móvel de 3 pontos. Pode-se deduzir da figura que o filtro de média móvel de 3 pontos não fez muito na filtragem do ruído. Nós aumentamos os toques de filtro para 51 pontos e podemos ver que o ruído na saída reduziu muito, que é descrito na próxima figura. Nós aumentamos as derivações para 101 e 501 e podemos observar que mesmo que o ruído seja quase zero, as transições são drasticamente apagadas (observe a inclinação de cada lado do sinal e compare-as com a transição ideal da parede de tijolo em Nossa entrada). Resposta de Freqüência: A partir da resposta de freqüência pode-se afirmar que o roll-off é muito lento ea atenuação da banda de parada não é boa. Dada esta atenuação de banda de parada, claramente, o filtro de média móvel não pode separar uma banda de freqüências de outra. Como sabemos, um bom desempenho no domínio do tempo resulta em fraco desempenho no domínio da freqüência e vice-versa. Em suma, a média móvel é um filtro de suavização excepcionalmente bom (a ação no domínio do tempo), mas um filtro passa-baixa excepcionalmente ruim (a ação no domínio da freqüência) Links externos: Livros recomendados: Barra lateral principal A média móvel como um filtro A média móvel é frequentemente utilizada para suavizar dados na presença de ruído. A média móvel simples nem sempre é reconhecida como o filtro de Resposta de Impulso Finito (FIR) que é, enquanto é realmente um dos filtros mais comuns no processamento de sinal. Tratá-lo como um filtro permite compará-lo com, por exemplo, windowed-sinc filtros (ver os artigos sobre low-pass, high-pass, band-pass e band-reject filtros para exemplos desses). A principal diferença com esses filtros é que a média móvel é adequada para sinais para os quais a informação útil está contida no domínio do tempo. Das quais as medidas de alisamento por média são um excelente exemplo. Filtros windowed-sinc, por outro lado, são fortes performers no domínio da freqüência. Com equalização no processamento de áudio como um exemplo típico. Há uma comparação mais detalhada de ambos os tipos de filtros no domínio do tempo versus desempenho de domínio de freqüência de filtros. Se você tiver dados para os quais o tempo e o domínio de freqüência são importantes, então você pode querer dar uma olhada em Variações na Média Móvel. Que apresenta um número de versões ponderadas da média móvel que são melhores nisso. A média móvel de comprimento (N) pode ser definida como escrita como é tipicamente implementada, com a amostra de saída corrente como a média das amostras (N) anteriores. Visto como um filtro, a média móvel executa uma convolução da seqüência de entrada (xn) com um pulso retangular de comprimento (N) e altura (1N) (para fazer a área do pulso e, portanto, o ganho do filtro , 1 ). Na prática, é melhor tomar (N) ímpar. Embora uma média móvel possa também ser calculada usando um número par de amostras, usar um valor ímpar para (N) tem a vantagem de que o atraso do filtro será um número inteiro de amostras, uma vez que o atraso de um filtro com (N) Amostras é exactamente ((N-1) 2). A média móvel pode então ser alinhada exatamente com os dados originais deslocando-o por um número inteiro de amostras. Domínio Dado que a média móvel é uma convolução com um pulso retangular, a sua resposta de frequência é uma função sinc. Isso torna algo como o dual do filtro windowed-sinc, uma vez que é uma convolução com um pulso sinc que resulta em uma resposta de freqüência retangular. É esta resposta de freqüência de sinc que faz com que a média móvel seja um desempenho fraco no domínio da freqüência. No entanto, ele funciona muito bem no domínio do tempo. Portanto, é perfeito para suavizar os dados para remover o ruído, enquanto ao mesmo tempo ainda mantém uma rápida resposta passo (Figura 1). Para o típico Ruído Gaussiano Branco Aditivo (AWGN) que é freqüentemente assumido, a média (N) de amostras tem o efeito de aumentar a SNR por um fator de (sqrt N). Como o ruído para as amostras individuais não está correlacionado, não há razão para tratar cada amostra de forma diferente. Assim, a média móvel, que dá a cada amostra o mesmo peso, vai se livrar da quantidade máxima de ruído para uma dada nitidez resposta passo. Implementação Porque é um filtro FIR, a média móvel pode ser implementada através de convolução. Ele terá então a mesma eficiência (ou falta dela) como qualquer outro filtro FIR. No entanto, também pode ser implementado recursivamente, de uma forma muito eficiente. Segue-se diretamente a partir da definição de que esta fórmula é o resultado das expressões para (yn) e (yn1), ou seja, onde observamos que a mudança entre (yn1) e (yn) é que um termo extra (xn1N) aparece em O final, enquanto o termo (xn-N1N) é removido desde o início. Nas aplicações práticas, muitas vezes é possível deixar de fora a divisão por (N) para cada termo, compensando o ganho resultante de (N) em outro lugar. Esta implementação recursiva será muito mais rápida que a convolução. Cada novo valor de (y) pode ser calculado com apenas duas adições, em vez das (N) adições que seriam necessárias para uma implementação direta da definição. Uma coisa a olhar para fora com uma implementação recursiva é que os erros de arredondamento irá acumular. Isso pode ou não pode ser um problema para o aplicativo, mas também implica que essa implementação recursiva realmente funcionará melhor com uma implementação inteira do que com números de ponto flutuante. Isso é bastante incomum, uma vez que uma implementação de ponto flutuante é geralmente mais simples. A conclusão de tudo isso deve ser que você nunca deve subestimar a utilidade do simples filtro de média móvel em aplicações de processamento de sinal. Filter Design Tool Este artigo é complementado com uma ferramenta Filter Design. Experimente com diferentes valores para (N) e visualize os filtros resultantes. Experimente agoraMoving Average Filters As médias móveis são propensas a whipsaws, quando o preço cruza e para trás através da média móvel em um mercado de variação. Traders desenvolveram uma série de filtros ao longo dos anos para eliminar sinais falsos. O sistema de média móvel mais simples gera sinais quando o preço cruza a média móvel: Ir longo quando o preço cruza acima da média móvel de abaixo. Ir curto quando o preço cruza para abaixo da média móvel de cima. Os filtros são adicionados para medir objetivamente quando o preço atravessou a média móvel. Os filtros mais comuns são: Preço de fechamento - um, dois ou três dias sucessivos devem todos fechar acima abaixo da média móvel A barra inteira deve atravessar a média móvel Duas ou três barras (em sucessão) devem estar todos afastados da média móvel A média deve inclinar na direção do comércio Preço típico. O preço médio ou o fechamento ponderado também podem ser usados como substitutos do preço de fechamento. Trades só são introduzidos se a média móvel inclina na direção do comércio. Este filtro não funcionará com médias móveis exponenciais porque a média móvel exponencial sempre inclina-se para cima quando o preço fecha acima da média móvel e inclina-se para baixo se fechar abaixo. Saia quando o preço re-cruza a média móvel. Moving Average Slope pode ser usado em conjunto com outros filtros, como preço de fechamento. A média móvel simples é usada com dois filtros: Passe o mouse sobre as legendas dos gráficos para exibir os sinais de negociação. Ir curto - dois fecha abaixo de uma média móvel decrescente. Go média de longo prazo está subindo e preço fechou acima da média móvel por 2 dias. O seguinte mergulho abaixo da média móvel (no início de janeiro) é filtrado para fora. O comércio longo é saído porque há dois fechamentos abaixo da média movente. Nenhum comércio curto é introduzido como a média móvel está inclinada para cima. Vá longo - dois fecha acima de uma média móvel em ascensão. Ir curto como há dois fecha abaixo de uma queda média móvel. Vá longo - dois fecha acima de uma média móvel em ascensão. Ir curto - dois fecha abaixo de uma média móvel decrescente. Go longa - média móvel está subindo novamente e há 2 fecha acima dela. Observe quão lucrativo o longo comércio 2 é durante a forte tendência ascendente, em comparação com quando whipsaws preço em torno da média móvel relativamente plana. Freqüentemente comutação você dentro e fora de comércios. Os indicadores de tendência normalmente não são lucrativos, e devem ser evitados, durante os mercados de alcance.
No comments:
Post a Comment